Heavy Photon Search DAQ and Trigger

Sergey Boyarinov JLAB September 2010

S. Boyarinov boiarino@jlab.org

Requirements

- 50kHz event rate at Event Builder
- 250MB/s data rate at Event Builder (calorimeter 25MB/s, muon 6MB/s, SVT 215MB/s)
- 100MB/s data rate on tape (after level3 trigger)

DAQ System Overview

Electronics for HPS Proposal September 20, 2010 S. Boyarinov boiarino@jlab.org

DAQ System Overview (cont.)

- SVT readout system: 10 boards in ATCA format
- Calorimeter and Muon System Readout: 704 channels of 12bit 250MHz Flash ADCs, 144 channels of 85ps resolution pipeline TDCs with discriminators
- Flash ADC based trigger system
- 2 VME, 1 VME64X, 3 VXS, 1 ATCA crates equipped with Readout Controllers and Trigger Units
- JLAB CODA DAQ software

SVT Data Rate

- The assumption is that the system will run at 3 times the noise threshold.
- The occupancy is thus 0.135%.
- This occupancy results in 92 SVT channels over threshold.
- From legitimate tracker hits 10 x 2(strips/layer) x2 (H&V) x 6 layers= 240 channels are expected.
- Each channel-over-threshold results in 6 digitized values (one mode available in the APV25)
- Including headers, etc, the resulting data rate is 4,316 bytes x 50 KHz = 215.8 Mbytes/sec from SVT after data reduction in ATCA FPGA's.

ATCA (Advanced Telecommunications Computing Architecture) SVT Readout Board (SLAC)

- Each board supports 12 Hybrids Containing 5 APV25s each
- Total data input = \sim 36.9Gbps
- Data reduction performed on incoming data in FPGA
- Output data rate depends on occupancy
 - Expected rate <= 2Gbps (from last slide) total for 10 cards
 - Capability of ATCA systems running at SLAC is 10 Gbit/s per card, up to 100 Gbit/sec communication within a crate, 20 Gbit/sec off the crate
- System clock & trigger received from ATCA backplane
- 10Gbps Ethernet backplane interconnect Electronics for HPS Proposal

September 20, 2010

6

Ryan Herbst, Gunther Haller, SLAC

S. Boyarinov boiarino@jlab.org

ATCA SVT Readout System (SLAC)

SVT Trigger Interface Board (SLAC)

- Receives clock, trigger & sync from trigger supervisor
 - Forwards signals to readout boards over ATCA backplane
- Forwards buffer control information to CPU over Ethernet
- Functionality may be combined into readout board design if space permits
 - One readout board would be assigned the role of trigger interface
- Duplicate of existing TI design in ATCA format
 - Addition of Ethernet interface for management

Ryan Herbst, Gunther Haller, SLAC

Electronics for HPS Proposal September 20, 2010

Flash ADC and Trigger System (VXS)

Electronics for HPS Proposal September 20, 2010

Pipeline TDC System (VME64X/VME)

Trigger processing - FADC

- only channel 00 is shown in details, all other channels have the same structure

Flash ADC board data processing logic

Trigger processing - FADC (cont.)

Trigger processing – FADC/CTP

Trigger processing - CTP/SSP

- Calorimeter: search for clusters using 3x3 crystals window
- Muon system: search for hits
- Trigger 1: two calorimeter clusters, cuts on geometry (with respect to beam) and energy (two thresholds)
- Trigger 2: two muon hits, cuts on geometry (upper and bottom) and energy (threshold)
- Possible problem: boundary effects because of segmented calorimeter readout and limited bandwidth between CTP and SSP

Timeline

- Available boards: all TDCs, VME/VME64X crates
- Ordered by Nov 2010: 16 JLAB-made discriminator/scaler boards
- Ordered by Jan 2011: 16 FADCs, 3 CTPs, 3 SDs, 3 TIs, 3 Signal Distribution Boards
- Not ordered but needed: 32 FADC boards, 1 SSP board, VXS crates, crate controllers
- Oct 2010 Jan 2011: FADC, CTP and SSP trigger FPGAs programing
- Feb 2011: testing starts with partially assembled system (without SVT readout)
- Feb 2011: SVT Board available
- April 2011: testing continues with SVT readout
- Jun 2011: complete DAQ/trigger system (without final SVT which is available in Fall